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Particle-In-Cell (PIC) Simulation
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Green Function Solution of Poisson’s Equation
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Direct summation of the convolution scales as N6 !!!!
N – grid number in each dimension



Green Function Solution of Poisson’s Equation

φF(r) = Gs(r,r')ρ(r')dr'∫
Gs(r,r') = G(r + rs,r')

φc(ri) = h Gc(ri
i '=1

2N

∑ − ri' )ρc(ri' )
φ(ri) = φc(ri)  for i =  1,  N

Hockney’s Algorithm:- scales as (2N)3log(2N)
- Ref: Hockney and Easwood, Computer Simulation using Particles, McGraw-Hill Book Company, New York, 1985.

Shifted Green function Algorithm:
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A Schematic Plot of an e- Beam and Its Image Charge
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Test of Image Space-Charge Calculation 
Numerical Solution vs. Analytical Solution

Shifted-green function

Analytical solution 



Integrated Green Function Solution 
of Poisson’s Equation 
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The IMPACT-T code

• 3D Integrated Green method to accurately compute the 
space-charge forces for a beam with large aspect ratio

• 3D Shifted Green method to efficiently compute the space-
charge forces from the image charge 

• Multiple slices/bins to handle the beam with large energy 
spread

• Arbitrary overlap of external fields to allow the modeling of 
both standing wave and traveling wave structure

• Transverse and longitudinal wakefield effects included (in 
testing)

• Parallel implementation on high performance computer to 
allow multiple million, high resolution simulation



Speed up of the IMPACT-T code vs. Number of Processors



A Benchmark Example
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Zrms and Relative Energy Spread vs. Position

rms energy spread

longitudinal rms size



Xrsm vs. Distance with Integrated Green Function and
Standard Green Function for Space-Charge Forces Calculation 
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Xrsm vs. Distance with/without 
Image Charge Effect of Cathode
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Transverse and Longitudinal RMS Size
with 1, 2, and 4 Slices
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Transverse RMS Emittance with 1, 2, and 4 Slices



Correlated RMS Energy Spread with 1, 2, and 4 Slices



Gun S1 S2 L0-1
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≤ 1.2,1  µm.radεprojected,εslice

1 nCCharge 
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A Schematic Plot of LCLS Injector Layout



Kinetic Energy vs. Distance at LCLS Injector



Transverse Projected RMS Emittance vs. Distance
with Different Longitudinal Slices



Transverse Sliced Emittance after the L0-1 
with Different Longitudinal Slices



Emittance Growth after L0-1 vs. Initial Offset
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